Lilyana Khatib


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Capturing Distalization
Rose Stamp | Lilyana Khatib | Hagit Hel-Or
Proceedings of the LREC2022 10th Workshop on the Representation and Processing of Sign Languages: Multilingual Sign Language Resources

Coding and analyzing large amounts of video data is a challenge for sign language researchers, who traditionally code 2D video data manually. In recent years, the implementation of 3D motion capture technology as a means of automatically tracking movement in sign language data has been an important step forward. Several studies show that motion capture technologies can measure sign language movement parameters – such as volume, speed, variance – with high accuracy and objectivity. In this paper, using motion capture technology and machine learning, we attempt to automatically measure a more complex feature in sign language known as distalization. In general, distalized signs use the joints further from the torso (such as the wrist), however, the measure is relative and therefore distalization is not straightforward to measure. The development of a reliable and automatic measure of distalization using motion tracking technology is of special interest in many fields of sign language research.