Lilly Brauner


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Moral reckoning: How reliable are dictionary-based methods for examining morality in text?
Ines Rehbein | Lilly Brauner | Florian Ertz | Ines Reinig | Simone Ponzetto
Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities

Due to their availability and ease of use, dictionary-based measures of moral values are a popular tool for text-based analyses of morality that examine human attitudes and behaviour across populations and cultures. In this paper, we revisit the construct validity of different dictionary-based measures of morality in text that have been proposed in the literature. We discuss conceptual challenges for text-based measures of morality and present an annotation experiment where we create a new dataset with human annotations of moral rhetoric in German political manifestos. We compare the results of our human annotations with different measures of moral values, showing that none of them is able to capture the trends observed by trained human coders. Our findings have far-reaching implications for the application of moral dictionaries in the digital humanities.