Likhith Asapu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Bridging Laughter Across Languages: Generation of Hindi-English Code-mixed Puns
Likhith Asapu | Prashant Kodali | Ashna Dua | Kapil Rajesh Kavitha | Manish Shrivastava
Proceedings of the 1st Workshop on Computational Humor (CHum)

Puns, as a linguistic phenomenon, hold significant importance in both humor and language comprehension. While extensive research has been conducted in the realm of pun generation in English, there exists a notable gap in the exploration of pun generation within code-mixed text, particularly in Hindi-English code-mixed text. This study addresses this gap by offering a computational method specifically designed to create puns in Hindi-English code-mixed text. In our investigation, we delve into three distinct methodologies aimed at pun generation utilizing pun-alternate word pairs. Furthermore, this novel dataset, HECoP, comprising of 2000 human-annotated sentences serves as a foundational resource for training diverse pun detection models. Additionally, we developed a structured pun generation pipeline capable of generating puns from a single input word without relying on predefined word pairs. Through rigorous human evaluations, our study demonstrates the efficacy of our proposed models in generating code-mixed puns. The findings presented herein lay a solid groundwork for future endeavours in pun generation and computational humor within diverse linguistic contexts.