Lijun Xu

Also published as: 立军


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
面向工艺文本的实体与关系最近邻联合抽取模型(Nearest Neighbor Joint Extraction Model for Entity and Relationship in Process Text)
Danqingxin Yang (杨丹清忻) | Peiyan Wang (王裴岩) | Lijun Xu (徐立军)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“该 文 研 究 工 艺 文 本 中 实 体 关 系 联 合 抽 取 问 题 , 提 出 了 最 近 邻 联 合 抽 取 模 型(NNJE)。NNJE利用工艺文本中实体边界字间搭配规律建模外显记忆,通过最近邻方法在某种指定关系下为待预测组合检索出具有相似字间搭配的实例,为实体边界识别以及实体对组合提供更有力的限制条件,提升模型预测准确率,改善模型性能。实验设置了工艺文本关系数据集。实验结果表明,该文方法较基线模型准确率P值提高了3.53%,F1值提升了1.03%,优于PURE、CasRel、PRGC与TPlinker等方法,表明提出的方法能够有效地提升三元组抽取效果。”