Lihong Liu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Overview of EvaHan2025: The First International Evaluation on Ancient Chinese Named Entity Recognition
Bin Li | Bolin Chang | Ruilin Liu | Xue Zhao | Si Shen | Lihong Liu | Yan Zhu | Zhixing Xu | Weiguang Qu | Dongbo Wang
Proceedings of the Second Workshop on Ancient Language Processing

Ancient Chinese books have great values in history and cultural studies. Named en-tities like person, location, time are cru-cial elements, thus automatic Named En-tity Recognition (NER) is considered a ba-sic task in ancient Chinese text processing. This paper introduces EvaHan2025, the first international ancient Chinese Named Entity Recognition bake-off. The evalua-tion introduces a rigorous benchmark for assessing NER performance across histori-cal and medical texts, covering 12 named entity types. A total of 13 teams par-ticipated in the competition, submitting 77 system runs. In the closed modality, where participants were restricted to us-ing only the training data, the highest F1 scores reached 85.04% on TestA and 90.28% on TestB, both derived from his-torical texts, while performance on medi-cal texts (TestC) reached 84.49%. The re-sults indicate that text genre significantly impacts model performance, with histori-cal texts generally yielding higher scores. Additionally, the intrinsic characteristics of named entities also influence recogni-tion performance. These findings high-light the challenges and opportunities in ancient Chinese NER and underscore the importance of domain adaptation and en-tity type diversity in future research.