Lian Fu


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MedCOD: Enhancing English-to-Spanish Medical Translation of Large Language Models Using Enriched Chain-of-Dictionary Framework
Md Shahidul Salim | Lian Fu | Arav Adikesh Ramakrishnan | Zonghai Yao | Hong Yu
Findings of the Association for Computational Linguistics: EMNLP 2025

We present MedCOD (Medical Chain-of-Dictionary), a hybrid framework designed to improve English-to-Spanish medical translation by integrating domain-specific structured knowledge into large language models (LLMs). MedCOD integrates domain-specific knowledge from both the Unified Medical Language System (UMLS) and the LLM-as-Knowledge-Base (LLM-KB) paradigm to enhance structured prompting and fine-tuning. We constructed a parallel corpus of 2,999 English-Spanish MedlinePlus articles and a 100-sentence test set annotated with structured medical contexts. Four open-source LLMs (Phi-4, Qwen2.5-14B, Qwen2.5-7B, and LLaMA-3.1-8B) were evaluated using structured prompts that incorporated multilingual variants, medical synonyms, and UMLS-derived definitions, combined with LoRA-based fine-tuning. Experimental results demonstrate that MedCOD significantly improves translation quality across all models. For example, Phi-4 with MedCOD and fine-tuning achieved BLEU 44.23, chrF++ 28.91, and COMET 0.863, surpassing strong baseline models like GPT-4o and GPT-4o-mini. Ablation studies confirm that both MedCOD prompting and model adaptation independently contribute to performance gains, with their combination yielding the highest improvements. These findings highlight the potential of structured knowledge integration to enhance LLMs for medical translation tasks.