This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Li-KuangChen
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
While sentence simplification is an active research topic in NLP, its adjacent tasks of sentence complexification and same-level paraphrasing are not. To train models on all three tasks, we present two new unsupervised datasets. We compare these datasets, one labeled by a weak classifier and the other by a rule-based approach, with a single supervised dataset. Using these three datasets for training, we perform extensive experiments on both multitasking and prompting strategies. Compared to other systems trained on unsupervised parallel data, models trained on our weak classifier labeled dataset achieve state-of-the-art performance on the ASSET simplification benchmark. Our models also outperform previous work on sentence-level targeting. Finally, we establish how a handful of Large Language Models perform on these tasks under a zero-shot setting.
Methods addressing spurious correlations such as Just Train Twice (JTT, Liu et al. 2021) involve reweighting a subset of the training set to maximize the worst-group accuracy. However, the reweighted set of examples may potentially contain unlearnable examples that hamper the model’s learning. We propose mitigating this by detecting outliers to the training set and removing them before reweighting. Our experiments show that our method achieves competitive or better accuracy compared with JTT and can detect and remove annotation errors in the subset being reweighted in JTT.
We present a method for determining intended sense definitions of a given academic word in an academic keyword list. In our approach, the keyword list are converted into unigram of all possible Mandarin translations, intended or not. The method involve converting words in the keyword list into all translations using a bilingual dictionary, computing the unigram word counts of translations, and computing character counts from the word counts. At run-time, each definition (with associated translation) of the given word is scored with word and character counts, and the definition with the highest count is returned. We present a prototype system for the Academic Keyword List to generate definitions and translation for pedagogy purposes. We also experimented with clustering definition embeddings of all words and definitions, and identifying intended sense in favor of embedding in larger clusters. Preliminary evaluation shows promising performance. This endeavor is a step towards creating a full-fledged dictionary from an academic word list.