This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
LiGao
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
The evolution of Large Language Models (LLMs) has significantly advanced multi-turn conversation systems, emphasizing the need for proactive guidance to enhance users’ interactions. However, these systems face challenges in dynamically adapting to shifts in users’ goals and maintaining low latency for real-time interactions. In the Baidu Search AI assistant, an industrial-scale multi-turn search system, we propose a novel two-phase framework to provide proactive guidance. The first phase, Goal-adaptive Supervised Fine-Tuning (G-SFT), employs a goal adaptation agent that dynamically adapts to user goal shifts and provides goal-relevant contextual information. G-SFT also incorporates scalable knowledge transfer to distill insights from LLMs into a lightweight model for real-time interaction. The second phase, Click-oriented Reinforcement Learning (C-RL), adopts a generate-rank paradigm, systematically constructs preference pairs from user click signals, and proactively improves click-through rates through more engaging guidance. This dual-phase architecture achieves complementary objectives: G-SFT ensures accurate goal tracking, while C-RL optimizes interaction quality through click signal-driven reinforcement learning. Extensive experiments demonstrate that our framework achieves 86.10% accuracy in offline evaluation (+23.95% over baseline) and 25.28% CTR in online deployment (149.06% relative improvement), while reducing inference latency by 69.55% through scalable knowledge distillation.
Fake news detection is a challenging problem due to its tremendous real-world political and social impacts. Recent fake news detection works focus on learning news features from News Propagation Graph (NPG). However, little attention is paid to the issues of both authenticity of the relationships and topology imbalance in the structure of NPG, which trick existing methods and thus lead to incorrect prediction results. To tackle these issues, in this paper, we propose a novel Topology imbalance and Relation inauthenticity aware Hierarchical Graph Attention Networks (TR-HGAN) to identify fake news on social media. Specifically, we design a new topology imbalance smoothing strategy to measure the topology weight of each node. Besides, we adopt a hierarchical-level attention mechanism for graph convolutional learning, which can adaptively identify the authenticity of relationships by assigning appropriate weights to each of them. Experiments on real-world datasets demonstrate that TR-HGAN significantly outperforms state-of-the-art methods.
In this paper, we alleviate the local optimality of back-translation by learning a policy (takes the form of an encoder-decoder and is defined by its parameters) with future rewarding under the reinforcement learning framework, which aims to optimize the global word predictions for unsupervised neural machine translation. To this end, we design a novel reward function to characterize high-quality translations from two aspects: n-gram matching and semantic adequacy. The n-gram matching is defined as an alternative for the discrete BLEU metric, and the semantic adequacy is used to measure the adequacy of conveying the meaning of the source sentence to the target. During training, our model strives for earning higher rewards by learning to produce grammatically more accurate and semantically more adequate translations. Besides, a variational inference network (VIN) is proposed to constrain the corresponding sentences in two languages have the same or similar latent semantic code. On the widely used WMT’14 English-French, WMT’16 English-German and NIST Chinese-to-English benchmarks, our models respectively obtain 27.59/27.15, 19.65/23.42 and 22.40 BLEU points without using any labeled data, demonstrating consistent improvements over previous unsupervised NMT models.