Leila Wehbe


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Self-Discriminative Learning for Unsupervised Document Embedding
Hong-You Chen | Chin-Hua Hu | Leila Wehbe | Shou-De Lin
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Unsupervised document representation learning is an important task providing pre-trained features for NLP applications. Unlike most previous work which learn the embedding based on self-prediction of the surface of text, we explicitly exploit the inter-document information and directly model the relations of documents in embedding space with a discriminative network and a novel objective. Extensive experiments on both small and large public datasets show the competitiveness of the proposed method. In evaluations on standard document classification, our model has errors that are 5 to 13% lower than state-of-the-art unsupervised embedding models. The reduction in error is even more pronounced in scarce label setting.

2015

pdf bib
A Compositional and Interpretable Semantic Space
Alona Fyshe | Leila Wehbe | Partha P. Talukdar | Brian Murphy | Tom M. Mitchell
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2014

pdf bib
Aligning context-based statistical models of language with brain activity during reading
Leila Wehbe | Ashish Vaswani | Kevin Knight | Tom Mitchell
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)