Leila Ouahrani


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
AR-ASAG An ARabic Dataset for Automatic Short Answer Grading Evaluation
Leila Ouahrani | Djamal Bennouar
Proceedings of the Twelfth Language Resources and Evaluation Conference

Automatic short answer grading is a significant problem in E-assessment. Several models have been proposed to deal with it. Evaluation and comparison of such solutions need the availability of Datasets with manual examples. In this paper, we introduce AR-ASAG, an Arabic Dataset for automatic short answer grading. The Dataset contains 2133 pairs of (Model Answer, Student Answer) in several versions (txt, xml, Moodle xml and .db). We explore then an unsupervised corpus based approach for automatic grading adapted to the Arabic Language. We use COALS (Correlated Occurrence Analogue to Lexical Semantic) algorithm to create semantic space for word distribution. The summation vector model is combined to term weighting and common words to achieve similarity between a teacher model answer and a student answer. The approach is particularly suitable for languages with scarce resources such as Arabic language where robust specific resources are not yet available. A set of experiments were conducted to analyze the effect of domain specificity, semantic space dimension and stemming techniques on the effectiveness of the grading model. The proposed approach gives promising results for Arabic language. The reported results may serve as baseline for future research work evaluation