This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
LeiYang
Also published as:
雷 杨
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
With the increasing capability of large language models (LLMs), LLM-as-a-judge has emerged as a new evaluation paradigm. Compared with traditional automatic and manual evaluation, LLM evaluators exhibit better interpretability and efficiency. Despite this, existing LLM evaluators suffer from limited use scenarios and poor flexibility. To mitigate these issues, we propose Praetor, a fine-grained generative LLM evaluator with instance-level customazable evaluation criteria. To train Praetor, we curate a large-scale dataset guided with a hierarchical guideline covering a wide range of tasks and instance-level evaluation criteria. We train Praetor on this dataset in a multi-task learning fashion, which enables to evaluate LLMs in either pointwise grading or pairwise comparison way and support two languages simultaneously with a high flexibility of setting evaluation criteria. Extensive experiments demonstrate that Praetor outperforms previous LLM evaluators and instruction-tuned LLMs on multiple benchmarks, setting new SOTA results. It also exhibits the potential for generating critiques as scalable feedback to further improve LLMs. Our model and related resources are released at https://github.com/tjunlp-lab/Praetor.
Large language models (LLMs) based on the Transformer architecture usually have their context length limited due to the high training cost. Recent advancements extend the context window by adjusting the scaling factors of RoPE and fine-tuning. However, suboptimal initialization of these factors results in increased fine-tuning costs and reduced performance at target length. To address these challenges, we propose a novel RoPE-based fine-tuning framework that diverges from conventional scaling factors search. Specifically, we present a Divide-and-Conquer Incremental Search (DCIS) algorithm that strategically determines the better scaling factors. Further fine-tuning with the identified scaling factors effectively extends the context window of LLMs. Empirical results demonstrate that our methodology not only mitigates performance decay at extended target lengths but also allows the model to fine-tune on short contexts and generalize to long contexts, thereby reducing the cost of fine-tuning. The scaling factors obtained through DCIS can even perform effectively without fine-tuning. Further analysis of the search space reveals that DCIS achieves twice the search efficiency compared to other methods. We also examine the impact of the non-strictly increasing scaling factors utilized in DCIS and evaluate the general capabilities of LLMs across various context lengths.
Retrieval-augmented generation (RAG) offers a robust solution for developing enterprise internal virtual assistants by leveraging domain-specific knowledge and utilizing information from frequently updated corporate document repositories. In this work, we introduce the Enterprise-Knowledge RAG (EKRAG) dataset to benchmark RAG for enterprise knowledge question-answering (QA) across a diverse range of corporate documents, such as product releases, technical blogs, and financial reports. Using EKRAG, we systematically evaluate various retrieval models and strategies tailored for corporate content. We propose novel embedding-model (EM)-as-judge and ranking-model (RM)-as-judge approaches to assess answer quality in the context of enterprise information. Combining these with the existing LLM-as-judge method, we then comprehensively evaluate the correctness, relevance, and faithfulness of generated answers to corporate queries. Our extensive experiments shed light on optimizing RAG pipelines for enterprise knowledge QA, providing valuable guidance for practitioners. This work contributes to enhancing information retrieval and question-answering capabilities in corporate environments that demand high degrees of factuality and context-awareness.
Large language models (LLMs) have demonstrated prowess in a wide range of tasks. However, many LLMs exhibit significant performance discrepancies between high- and low-resource languages. To mitigate this challenge, we present FuxiTranyu, an open-source multilingual LLM, which is designed to satisfy the need of the research community for balanced and high-performing multilingual capabilities. The base model, FuxiTranyu-8B, features 8 billion parameters and is trained from scratch on meticulously balanced multilingual data that contains 600 billion tokens covering 43 natural languages and 16 programming languages. We also develop two instruction-tuned models: FuxiTranyu-8B-SFT which is fine-tuned on a diverse multilingual instruction dataset, and FuxiTranyu-8B-DPO which is further refined with DPO on a preference dataset for enhanced alignment ability. Extensive experiments on a wide range of multilingual benchmarks demonstrate the competitive performance of FuxiTranyu against existing multilingual LLMs, e.g., BLOOM-7B, PolyLM-13B, and Mistral-7B-Instruct. Both neuron and representation interpretability analyses reveal that FuxiTranyu achieves consistent multilingual representations across languages. To promote further research into multilingual LLMs, we release both the base and instruction-tuned FuxiTranyu models together with 58 pre-training checkpoints at HuggingFace and Github.
Multimodal Sentiment Analysis leverages multimodal signals to detect the sentiment of a speaker. Previous approaches concentrate on performing multimodal fusion and representation learning based on general knowledge obtained from pretrained models, which neglects the effect of domain-specific knowledge. In this paper, we propose Contrastive Knowledge Injection (ConKI) for multimodal sentiment analysis, where specific-knowledge representations for each modality can be learned together with general knowledge representations via knowledge injection based on an adapter architecture. In addition, ConKI uses a hierarchical contrastive learning procedure performed between knowledge types within every single modality, across modalities within each sample, and across samples to facilitate the effective learning of the proposed representations, hence improving multimodal sentiment predictions. The experiments on three popular multimodal sentiment analysis benchmarks show that ConKI outperforms all prior methods on a variety of performance metrics.
Fact checking is an important task for maintaining high quality posts and improving user experience in Community Question Answering forums. Therefore, the SemEval-2019 task 8 is aimed to identify factual question (subtask A) and detect true factual information from corresponding answers (subtask B). In order to address this task, we propose a system based on the BERT model with meta information of questions. For the subtask A, the outputs of fine-tuned BERT classification model are combined with the feature of length of questions to boost the performance. For the subtask B, the predictions of several variants of BERT model encoding the meta information are combined to create an ensemble model. Our system achieved competitive results with an accuracy of 0.82 in the subtask A and 0.83 in the subtask B. The experimental results validate the effectiveness of our system.