This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
LeiXia
Papers on this page may belong to the following people:Lei Xia (HKBU)
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The recent advancement of pre-trained Large Language Models (LLMs), such as OpenAI’s ChatGPT, has led to transformative changes across fields. For example, developing intelligent systems in the educational sector that leverage the linguistic capabilities of LLMs demonstrates a visible potential. Though researchers have recently explored how ChatGPT could possibly assist in student learning, few studies have applied these techniques to real-world classroom settings involving teachers and students. In this study, we implement a reading comprehension exercise generation system that provides high-quality and personalized reading materials for middle school English learners in China. Extensive evaluations of the generated reading passages and corresponding exercise questions, conducted both automatically and manually, demonstrate that the system-generated materials are suitable for students and even surpass the quality of existing human-written ones. By incorporating first-hand feedback and suggestions from experienced educators, this study serves as a meaningful pioneering application of ChatGPT, shedding light on the future design and implementation of LLM-based systems in the educational context.
Determining semantic relatedness between words or concepts is a fundamental process to many Natural Language Processing applications. Approaches for this task typically make use of knowledge resources such as WordNet and Wikipedia. However, these approaches only make use of limited number of features extracted from these resources, without investigating the usefulness of combining various different features and their importance in the task of semantic relatedness. In this paper, we propose a random walk model based approach to measuring semantic relatedness between words or concepts, which seamlessly integrates various features extracted from Wikipedia to compute semantic relatedness. We empirically study the usefulness of these features in the task, and prove that by combining multiple features that are weighed according to their importance, our system obtains competitive results, and outperforms other systems on some datasets.
In this paper, we describe an approach that aims to model heterogeneous resources for information extraction. Document is modeled in graph representation that enables better understanding of multi-media document and its structure which ultimately could result better cross-media information extraction. We also describe our proposed algorithm that segment document-based on the document modeling approach we described in this paper.