This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Homans’ Social Exchange Theory (SET) is widely recognized as a basic framework for understanding the formation and emergence of human civilizations and social structures. In social science, this theory is typically studied based on simple simulation experiments or real-world human studies, both of which either lack realism or are too expensive to control. In artificial intelligence, recent advances in large language models (LLMs) have shown promising capabilities in simulating human behaviors. Inspired by these insights, we adopt an interdisciplinary research perspective and propose using LLM-based agents to study Homans’ SET. Specifically, we construct a virtual society composed of three LLM agents and have them engage in a social exchange game to observe their behaviors. Through extensive experiments, we found that Homans’ SET is well validated in our agent society, demonstrating the consistency between the agent and human behaviors. Building on this foundation, we intentionally alter the settings of the agent society to extend the traditional Homans’ SET, making it more comprehensive and detailed. To the best of our knowledge, this paper marks the first step in studying Homans’ SET with LLM-based agents. More importantly, it introduces a novel and feasible research paradigm that bridges the fields of social science and computer science through LLM-based agents. Code is available at https://github.com/Paitesanshi/SET .
Trending topics have become a significant part of modern social media, attracting users to participate in discussions of breaking events. However, they also bring in a new channel for poisoning attacks, resulting in negative impacts on society. Therefore, it is urgent to study this critical problem and develop effective strategies for defense. In this paper, we propose TrendSim, an LLM-based multi-agent system to simulate trending topics in social media under poisoning attacks. Specifically, we create a simulation environment for trending topics that incorporates a time-aware interaction mechanism, centralized message dissemination, and an interactive system. Moreover, we develop LLM-based humanoid agents to simulate users in social media, and propose prototype-based attackers to replicate poisoning attacks. Besides, we evaluate TrendSim from multiple aspects to validate its effectiveness. Based on TrendSim, we conduct simulation experiments to study four critical problems about poisoning attacks on trending topics.
In recent research advancements within the community, large language models (LLMs) have sparked great interest in creating autonomous agents. However, current prompt-based agents often heavily rely on large-scale LLMs. Meanwhile, although fine-tuning methods significantly enhance the capabilities of smaller LLMs, the fine-tuned agents often lack the potential for self-reflection and self-improvement. To address these challenges, we introduce a novel agent framework named RetroAct, which is a framework that jointly optimizes both task-planning and self-reflective evolution capabilities in language agents. Specifically, we develop a two-stage joint optimization process that integrates imitation learning and reinforcement learning, and design an off-policy joint policy gradient optimization algorithm with imitation learning regularization to enhance the data efficiency and training stability in agent tasks. RetroAct significantly improves the performance of open-source models, reduces dependency on closed-source LLMs, and enables fine-tuned agents to learn and evolve continuously. We conduct extensive experiments across various testing environments, demonstrating RetroAct has substantial improvements in task performance and decision-making processes.
Role-playing is a crucial capability of Large Language Models (LLMs), enabling a wide range of practical applications, including intelligent non-player characters, digital twins, and emotional companions. Evaluating this capability in LLMs is challenging due to the complex dynamics involved in role-playing, such as maintaining character fidelity throughout a storyline and navigating open-ended narratives without a definitive ground truth. Current evaluation methods, which primarily focus on question-answering or conversational snapshots, fall short of adequately capturing the nuanced character traits and behaviors essential for authentic role-playing. In this paper, we propose CharacterBox, which is a simulation sandbox designed to generate situational fine-grained character behavior trajectories. These behavior trajectories enable a more comprehensive and in-depth evaluation of role-playing capabilities. CharacterBox consists of two main components: the character agent and the narrator agent. The character agent, grounded in psychological and behavioral science, exhibits human-like behaviors, while the narrator agent coordinates interactions between character agents and environmental changes. Additionally, we introduce two trajectory-based methods that leverage CharacterBox to enhance LLM performance. To reduce costs and facilitate the adoption of CharacterBox by public communities, we fine-tune two smaller models, CharacterNR and CharacterRM, as substitutes for GPT API calls, and demonstrate their competitive performance compared to advanced GPT APIs. The code is available at https://github.com/Paitesanshi/CharacterBox.