Lei Hsiung


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Spectral Insights into Data-Oblivious Critical Layers in Large Language Models
Xuyuan Liu | Lei Hsiung | Yaoqing Yang | Yujun Yan
Findings of the Association for Computational Linguistics: ACL 2025

Understanding how feature representations evolve across layers in large language models (LLMs) is key to improving their interpretability and robustness. While recent studies have identified critical layers linked to specific functions or behaviors, these efforts typically rely on data-dependent analyses of fine-tuned models, limiting their use to post-hoc settings. In contrast, we introduce a data-oblivious approach to identify intrinsic critical layers in pre-fine-tuned LLMs by analyzing representation dynamics via Centered Kernel Alignment (CKA). We show that layers with significant shifts in representation space are also those most affected during fine-tuning—a pattern that holds consistently across tasks for a given model. Our spectral analysis further reveals that these shifts are driven by changes in the top principal components, which encode semantic transitions from rationales to conclusions.We further apply these findings to two practical scenarios: efficient domain adaptation, where fine-tuning critical layers leads to greater loss reduction compared to non-critical layers; and backdoor defense, where freezing them reduces attack success rates by up to 40%.