Leah Nicolich-Henkin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Extreme Model Compression for On-device Natural Language Understanding
Kanthashree Mysore Sathyendra | Samridhi Choudhary | Leah Nicolich-Henkin
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track

In this paper, we propose and experiment with techniques for extreme compression of neural natural language understanding (NLU) models, making them suitable for execution on resource-constrained devices. We propose a task-aware, end-to-end compression approach that performs word-embedding compression jointly with NLU task learning. We show our results on a large-scale, commercial NLU system trained on a varied set of intents with huge vocabulary sizes. Our approach outperforms a range of baselines and achieves a compression rate of 97.4% with less than 3.7% degradation in predictive performance. Our analysis indicates that the signal from the downstream task is important for effective compression with minimal degradation in performance.

2016

pdf bib
A Wizard-of-Oz Study on A Non-Task-Oriented Dialog Systems That Reacts to User Engagement
Zhou Yu | Leah Nicolich-Henkin | Alan W Black | Alexander Rudnicky
Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue

pdf bib
Initiations and Interruptions in a Spoken Dialog System
Leah Nicolich-Henkin | Carolyn Rosé | Alan W Black
Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue