Lauritz Brandt


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Terminology-Constrained Neural Machine Translation at SAP
Miriam Exel | Bianka Buschbeck | Lauritz Brandt | Simona Doneva
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

This paper examines approaches to bias a neural machine translation model to adhere to terminology constraints in an industrial setup. In particular, we investigate variations of the approach by Dinu et al. (2019), which uses inline annotation of the target terms in the source segment plus source factor embeddings during training and inference, and compare them to constrained decoding. We describe the challenges with respect to terminology in our usage scenario at SAP and show how far the investigated methods can help to overcome them. We extend the original study to a new language pair and provide an in-depth evaluation including an error classification and a human evaluation.

2016

pdf bib
ICL-HD at SemEval-2016 Task 8: Meaning Representation Parsing - Augmenting AMR Parsing with a Preposition Semantic Role Labeling Neural Network
Lauritz Brandt | David Grimm | Mengfei Zhou | Yannick Versley
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)