Laurens Van Der Maas


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Speed Without Sacrifice: Fine-Tuning Language Models with Medusa and Knowledge Distillation in Travel Applications
Daniel Zagyva | Emmanouil Stergiadis | Laurens Van Der Maas | Aleksandra Dokic | Eran Fainman | Ilya Gusev | Moran Beladev
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

In high-stakes industrial NLP applications, balancing generation quality with speed and efficiency presents significant challenges. We address them by investigating two complementary optimization approaches: Medusa for speculative decoding and knowledge distillation (KD) for model compression. We demonstrate the practical application of these techniques in real-world travel domain tasks, including trip planning, smart filters, and generating accommodation descriptions. We introduce modifications to the Medusa implementation, starting with base pre-trained models rather than conversational fine-tuned ones, and developing a simplified single-stage training process for Medusa-2 that maintains performance while reducing computational requirements. Lastly, we present a novel framework that combines Medusa with knowledge distillation, achieving compounded benefits in both model size and inference speed. Our experiments with TinyLlama-1.1B as the student model and Llama-3.1-70B as the teacher show that the combined approach maintains the teacher’s performance quality while reducing inference latency by 10-20x.