Larry Cady


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Comparing Chinese-English MT Performance Involving ChatGPT and MT Providers and the Efficacy of AI mediated Post-Editing
Larry Cady | Benjamin Tsou | John Lee
Proceedings of Machine Translation Summit XIX, Vol. 2: Users Track

The recent introduction of ChatGPT has caused much stir in the translation industry because of its impressive translation performance against leaders in the industry. We review some ma-jor issues based on the BLEU comparisons of Chinese-to-English (C2E) and English-to-Chinese (E2C) machine translation (MT) performance by ChatGPT against a range of leading MT providers in mostly technical domains. Based on sample aligned sentences from a sizable bilingual Chinese-English patent corpus and other sources, we find that while ChatGPT perform better generally, it does not consistently perform better than others in all areas or cases. We also draw on novice translators as post-editors to explore a major component in MT post-editing: Optimization of terminology. Many new technical words, including MWEs (Multi-Word Expressions), are problematic because they involve terminological developments which must balance between proper encapsulation of technical innovation and conforming to past traditions . Drawing on the above-mentioned corpus we have been developing an AI mediated MT post-editing (MTPE) system through the optimization of precedent rendition distribution and semantic association to enhance the work of translators and MTPE practitioners.