Kyunghyun Lee


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
LLMs on interactive feature collections with implicit dynamic decision strategy
Juyeon Heo | Vihari Piratla | Kyunghyun Lee | Hyonkeun Joh | Adrian Weller
Proceedings of the 31st International Conference on Computational Linguistics

In real-world contexts such as medical diagnosis and business consulting, effective problem-solving often requires gathering relevant information through interactions and targeted questioning to pinpoint the root cause of a problem. However, Large Language Models (LLMs) often struggle to efficiently narrow down the search space, leading to either missing key information or asking redundant questions when guided by implicit methods like Chain-of-Thought (CoT). Some approaches employ external engineered systems to guide reasoning paths, but these methods may not fully utilize the inherent problem-solving capabilities of LLMs and often require multiple expensive API calls. This study explores how we can implicitly guide LLMs to enhance their interactive feature collection abilities within a single prompt. Instead of employing explicit search algorithms or step-by-step external guidance, we provide high-level guidelines that allow LLMs to dynamically adjust their strategies and iteratively refine their decision-making processes independently. Evaluations on synthetic 20-Questions games and real-world scenarios, including business and medical diagnosis cases, demonstrate that LLMs guided by these strategies perform more effective interactive feature collection, asking fewer and more strategic questions and achieving better problem-solving efficiency.