Kushal Majmundar


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
NoEl: An Annotated Corpus for Noun Ellipsis in English
Payal Khullar | Kushal Majmundar | Manish Shrivastava
Proceedings of the Twelfth Language Resources and Evaluation Conference

Ellipsis resolution has been identified as an important step to improve the accuracy of mainstream Natural Language Processing (NLP) tasks such as information retrieval, event extraction, dialog systems, etc. Previous computational work on ellipsis resolution has focused on one type of ellipsis, namely Verb Phrase Ellipsis (VPE) and a few other related phenomenon. We extend the study of ellipsis by presenting the No(oun)El(lipsis) corpus - an annotated corpus for noun ellipsis and closely related phenomenon using the first hundred movies of Cornell Movie Dialogs Dataset. The annotations are carried out in a standoff annotation scheme that encodes the position of the licensor, the antecedent boundary, and Part-of-Speech (POS) tags of the licensor and antecedent modifier. Our corpus has 946 instances of exophoric and endophoric noun ellipsis, making it the biggest resource of noun ellipsis in English, to the best of our knowledge. We present a statistical study of our corpus with novel insights on the distribution of noun ellipsis, its licensors and antecedents. Finally, we perform the tasks of detection and resolution of noun ellipsis with different classifiers trained on our corpus and report baseline results.