Kunwar Yashraj Singh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
R-VLM: Region-Aware Vision Language Model for Precise GUI Grounding
Joonhyung Park | Peng Tang | Sagnik Das | Srikar Appalaraju | Kunwar Yashraj Singh | R. Manmatha | Shabnam Ghadar
Findings of the Association for Computational Linguistics: ACL 2025

Visual agent models for automating human activities on Graphical User Interfaces (GUIs) have emerged as a promising research direction, driven by advances in large Vision Language Models (VLMs). A critical challenge in GUI automation is the precise grounding of interface elements across diverse platforms. Existing vision-only GUI agents directly ground elements from large and cluttered screenshots, requiring them to process substantial irrelevant information that compromises their accuracy. In addition, these approaches typically employ basic cross-entropy loss for learning grounding objectives, which fails to effectively capture grounding quality compared to established object detection metrics like Intersection-over-Union (IoU). To address these issues, we introduce R-VLM, a novel GUI grounding approach that leverages zoomed-in region proposals for precise element localization. We also propose an IoU-aware objective function that facilitates model convergence toward high IoU predictions. Our approach bridges the gap between VLMs and conventional object detection techniques, improving the state-of-the-art grounding accuracy by 13% across diverse GUI platforms on the GUI grounding benchmarks ScreenSpot and AgentStudio. In addition, our R-VLM approach shows 3.2-9.7% absolute accuracy improvements in GUI navigation tasks on the AITW and Mind2Web benchmarks.

pdf bib
On the Analysis and Distillation of Emergent Outlier Properties in Pre-trained Language Models
Tianyang Zhao | Kunwar Yashraj Singh | Srikar Appalaraju | Peng Tang | Ying Nian Wu | Li Erran Li
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

A small subset of dimensions within language Transformers’ representation spaces emerge as “outliers” during pretraining, encoding critical knowledge sparsely. We extend previous findings on emergent outliers to Encoder-Decoder Transformers and instruction-finetuned models, and tackle the problem of distilling a student Transformer from a larger teacher Transformer. Knowledge distillation reduces model size and cost by transferring knowledge from a larger teacher to a smaller student, necessitating a trade-off among representation dimensions. We show that emergent outlier dimensions contribute significantly more to zero-shot performance than non-outlier dimensions. Based on this, we propose the Emergent Outlier Focused Distillation (EOFD) method, which prioritizes critical outlier dimensions in distillation using a weighted MSE loss. We empirically demonstrate that EOFD outperforms state-of-the-art distillation methods and generalizes well across Encoder-only BERT, Decoder-only GPT-2, and Encoder-Decoder T5 architectures.