Kunal Verma


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Mega-COV: A Billion-Scale Dataset of 100+ Languages for COVID-19
Muhammad Abdul-Mageed | AbdelRahim Elmadany | El Moatez Billah Nagoudi | Dinesh Pabbi | Kunal Verma | Rannie Lin
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We describe Mega-COV, a billion-scale dataset from Twitter for studying COVID-19. The dataset is diverse (covers 268 countries), longitudinal (goes as back as 2007), multilingual (comes in 100+ languages), and has a significant number of location-tagged tweets (~169M tweets). We release tweet IDs from the dataset. We also develop two powerful models, one for identifying whether or not a tweet is related to the pandemic (best F1=97%) and another for detecting misinformation about COVID-19 (best F1=92%). A human annotation study reveals the utility of our models on a subset of Mega-COV. Our data and models can be useful for studying a wide host of phenomena related to the pandemic. Mega-COV and our models are publicly available.

2012

pdf bib
Building a Lightweight Semantic Model for Unsupervised Information Extraction on Short Listings
Doo Soon Kim | Kunal Verma | Peter Yeh
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning