Kui Meng


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
MFE-NER: Multi-feature Fusion Embedding for Chinese Named Entity Recognition
Jiatong Li | Kui Meng
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“In Chinese Named Entity Recognition, character substitution is a complicated linguistic phe-nomenon. Some Chinese characters are quite similar as they share the same components or havesimilar pronunciations. People replace characters in a named entity with similar characters togenerate a new collocation but refer to the same object. As a result, it always leads to unrecog-nizable or mislabeling errors in the NER task. In this paper, we propose a lightweight method,MFE-NER, which fuses glyph and phonetic features to help pre-trained language models handlethe character substitution problem in the NER task with limited extra cost. Basically, in the glyphdomain, we disassemble Chinese characters into Five-Stroke components to represent structurefeatures. In the phonetic domain, an improved phonetic system is proposed in our work, makingit reasonable to describe phonetic similarity among Chinese characters. Experiments demon-strate that our method performs especially well in detecting character substitutions while slightlyimproving the overall performance of Chinese NER.”

2022

pdf bib
A Multi-Task Dual-Tree Network for Aspect Sentiment Triplet Extraction
Yichun Zhao | Kui Meng | Gongshen Liu | Jintao Du | Huijia Zhu
Proceedings of the 29th International Conference on Computational Linguistics

Aspect Sentiment Triplet Extraction (ASTE) aims at extracting triplets from a given sentence, where each triplet includes an aspect, its sentiment polarity, and a corresponding opinion explaining the polarity. Existing methods are poor at detecting complicated relations between aspects and opinions as well as classifying multiple sentiment polarities in a sentence. Detecting unclear boundaries of multi-word aspects and opinions is also a challenge. In this paper, we propose a Multi-Task Dual-Tree Network (MTDTN) to address these issues. We employ a constituency tree and a modified dependency tree in two sub-tasks of Aspect Opinion Co-Extraction (AOCE) and ASTE, respectively. To enhance the information interaction between the two sub-tasks, we further design a Transition-Based Inference Strategy (TBIS) that transfers the boundary information from tags of AOCE to ASTE through a transition matrix. Extensive experiments are conducted on four popular datasets, and the results show the effectiveness of our model.