Krishna Yadav


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Normalization of Spelling Variations in Code-Mixed Data
Krishna Yadav | Md Shad Akhtar | Tanmoy Chakraborty
Proceedings of the 19th International Conference on Natural Language Processing (ICON)

Code-mixed text infused with low resource language has always been a challenge for natural language understanding models. A significant problem while understanding such texts is the correlation between the syntactic and semantic arrangement of words. The phonemes of each character in a word dictates the spelling representation of a term in low resource language. However, there is no universal protocol or alphabet mapping for code-mixing. In this paper, we highlight the impact of spelling variations in code-mixed data for training natural language understanding models. We emphasize the impact of using phonetics to neutralize this variation in spelling across different usage of a word with the same semantics. The proposed approach is a computationally inexpensive technique and improves the performances of state-of-the-art models for three dialog system tasks viz. intent classification, slot-filling, and response generation. We propose a data pipeline for normalizing spelling variations irrespective of language.