Krish Didwania


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
AgriLLM:Harnessing Transformers for Framer Queries
Krish Didwania | Pratinav Seth | Aditya Kasliwal | Amit Agarwal
Proceedings of the Third Workshop on NLP for Positive Impact

Agriculture, vital for global sustenance, necessitates innovative solutions due to a lack of organized domain experts, particularly in developing countries where many farmers are impoverished and cannot afford expert consulting. Initiatives like Farmers Helpline play a crucial role in such countries, yet challenges such as high operational costs persist. Automating query resolution can alleviate the burden on traditional call centers, providing farmers with immediate and contextually relevant information.The integration of Agriculture and Artificial Intelligence (AI) offers a transformative opportunity to empower farmers and bridge information gaps.Language models like transformers, the rising stars of AI, possess remarkable language understanding capabilities, making them ideal for addressing information gaps in agriculture.This work explores and demonstrates the transformative potential of Large Language Models (LLMs) in automating query resolution for agricultural farmers, leveraging their expertise in deciphering natural language and understanding context. Using a subset of a vast dataset of real-world farmer queries collected in India, our study focuses on approximately 4 million queries from the state of Tamil Nadu, spanning various sectors, seasonal crops, and query types.