Kozo Chikai


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Responsive and Self-Expressive Dialogue Generation
Kozo Chikai | Junya Takayama | Yuki Arase
Proceedings of the First Workshop on NLP for Conversational AI

A neural conversation model is a promising approach to develop dialogue systems with the ability of chit-chat. It allows training a model in an end-to-end manner without complex rule design nor feature engineering. However, as a side effect, the neural model tends to generate safe but uninformative and insensitive responses like “OK” and “I don’t know.” Such replies are called generic responses and regarded as a critical problem for user-engagement of dialogue systems. For a more engaging chit-chat experience, we propose a neural conversation model that generates responsive and self-expressive replies. Specifically, our model generates domain-aware and sentiment-rich responses. Experiments empirically confirmed that our model outperformed the sequence-to-sequence model; 68.1% of our responses were domain-aware with sentiment polarities, which was only 2.7% for responses generated by the sequence-to-sequence model.