This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
KounianhuaDu
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
With the impressive reasoning and text generation capabilities of large language models (LLMs), methods leveraging multiple LLMs to debate each other have garnered increasing attention. However, existing debate-based approaches remain limited in effectiveness in structured and detailed domains represented by code generation due to several reasons: 1) Reliance on different instances of the same LLM for debate, neglecting the potential benefits of integrating diverse models with varied internal knowledge for more comprehensive code generation, 2) under-utilization of test cases, and 3) reliance on third-party LLM moderators for result consolidation and decision-making, probably introducing hallucinations and judgment errors. To address these challenges, we propose DebateCoder to collect intelligence of LLMs via test case-driven debate for code generation. In DebateCoder, test cases serve as a medium for models to analyze code and identify bugs, while opposing models generate test cases to challenge each other’s code during the debate process. These test cases, along with their execution results, are elaborately leveraged to refine and enhance the code through a novel contrastive analysis process. Furthermore, DebateCoder leverages test case outcomes to assess code quality and determine convergence criteria. Unlike previous approaches, DebateCoder emphasizes the collaborative improvement of both models through competitive debate and interactive analysis. Abundant experimental results on two datasets demonstrate the effectiveness of DebateCoder.
Debugging is a critical aspect of LLM’s coding ability. Early debugging efforts primarily focused on code-level analysis, which often falls short when addressing complex programming errors that require a deeper understanding of algorithmic logic. Recent advancements in large language models (LLMs) have shifted attention toward leveraging natural language reasoning to enhance code-related tasks. However, two fundamental questions remain unanswered: What type of natural language format is most effective for debugging tasks? And what specific benefits does natural language reasoning bring to the debugging process? In this paper, we introduce NL-DEBUGGING, a novel framework that employs natural language as an intermediate representation to improve code debugging. By debugging at a natural language level, we demonstrate that NL-DEBUGGING outperforms traditional debugging methods and enables a broader modification space through direct refinement guided by execution feedback. Our findings highlight the potential of natural language reasoning to advance automated code debugging and address complex programming challenges.
Tree search methods have demonstrated impressive performance in code generation. Previous methods combine tree search with reflection that summarizes past mistakes to achieve iterative improvement. However, these methods face significant challenges. First, they search directly within the code language space, neglecting the underlying reasoning process critical for effective code generation. Second, reflection-based approaches merely accumulate historical errors in memory without providing correct reasoning pathways, making it difficult for subsequent search iterations to identify optimal solutions, resulting in decreased search quality. In this work, we propose RethinkMCTS, a framework that systematically explores and refines the reasoning process for code generation. Specifically, we employ MCTS to search for thoughts before code generation and integrate MCTS with a refinement mechanism called rethink, which incorporates fine-grained code execution feedback to refine erroneous thoughts during the search. It ensures the search path aligns with better reasoning, improving overall search quality. Through extensive experiments, we demonstrate that RethinkMCTS outperforms previous search-based and feedback-enhanced code generation baselines.
While large language models (LLMs) have significantly advanced mathematical reasoning, Process Reward Models (PRMs) have been developed to evaluate the logical validity of reasoning steps. However, PRMs still struggle with out-of-distribution (OOD) challenges. This paper identifies the OOD issues including step OOD, arising from differences in reasoning patterns across model types and sizes, and question OOD, due to dataset shifts between training and real-world problems. To address these issues, we introduce Retrieval-Augmented Process Reward Model (RetrievalPRM), a novel framework designed to tackle these OOD issues. By utilizing a two-stage retrieval-enhanced mechanism, RetrievalPRM retrieves semantically similar questions and steps for PRM as a warmup to stimulate its potential to judge target steps, improving generalization and reasoning consistency across different models and problem types. Our extensive experiments demonstrate that RetrievalPRM outperforms existing baselines across multiple real-world datasets. Our open-source contributions include a retrieval-enhanced dataset, a tuning framework for PRM training, and the RetreivalPRM model, establishing a new standard for PRM performance.
To address these limitations, we propose BDC, a novel framework that Boosts reasoning exploration via multi-agent collaboration, Disentangles heterogeneous data into specialized experts, and Customizes solutions through dynamic model composition. BDC integrates a Monte Carlo Tree-of-Agents algorithm, where multiple LLMs mutually verify and refine reasoning paths through reflection-guided pruning, enabling efficient exploration of high-quality solutions. To handle data diversity, we cluster problems by latent semantics, train composable LoRA experts on each cluster, and deploy an input-aware hypernetwork to dynamically merge these experts into tailored solvers. Experiments on APPS and CodeContest benchmarks demonstrate BDC’s superiority: it achieves up to 73.8% accuracy on hard problems, outperforming state-of-the-art methods like LATS and RethinkMCTS by 9–15%. This work lays the groundwork for advancing LLM capabilities in complex reasoning tasks, offering a novel System2-to-System1 solution.
Aspect-Opinion Pair Extraction (AOPE) and Aspect Sentiment Triplet Extraction (ASTE) have drawn growing attention in NLP. However, most existing approaches extract aspects and opinions independently, optionally adding pairwise relations, often leading to error propagation and high time complexity. To address these challenges and being inspired by transition-based dependency parsing, we propose the first transition-based model for AOPE and ASTE that performs aspect and opinion extraction jointly, which also better captures position-aware aspect-opinion relations and mitigates entity-level bias. By integrating contrastive-augmented optimization, our model delivers more accurate action predictions and jointly optimizes separate subtasks in linear time. Extensive experiments on four commonly used ASTE/AOPE datasets show that, our proposed transition-based model outperform previous models on two out of the four datasets when trained on a single dataset. When multiple training sets are used, our proposed method achieves new state-of-the-art results on all datasets. We show that this is partly due to our model’s ability to benefit from transition actions learned from multiple datasets and domains.Our code is available at https://github.com/Paparare/trans_aste.