Kotla Sai Charan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Do It Yourself (DIY): Modifying Images for Poems in a Zero-Shot Setting Using Weighted Prompt Manipulation
Sofia Jamil | Kotla Sai Charan | Sriparna Saha | Koustava Goswami | Joseph K J
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Poetry is an expressive form of art that invites multiple interpretations, as readers often bring their own emotions, experiences, and cultural backgrounds into their understanding of a poem. Recognizing this, we aim to generate images for poems and improve these images in a zero-shot setting, enabling audiences to modify images as per their requirements. To achieve this, we introduce a novel Weighted Prompt Manipulation (WPM) technique, which systematically modifies attention weights and text embeddings within diffusion models. By dynamically adjusting the importance of specific words, WPM enhances or suppresses their influence in the final generated image, leading to semantically richer and more contextually accurate visualizations. Our approach exploits diffusion models and large language models (LLMs) such as GPT in conjunction with existing poetry datasets, ensuring a comprehensive and structured methodology for improved image generation in the literary domain. To the best of our knowledge, this is the first attempt at integrating weighted prompt manipulation for enhancing imagery in poetic language.