Korbinian Eller


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
BERT-based Annotation of Oral Texts Elicited via Multilingual Assessment Instrument for Narratives
Timo Baumann | Korbinian Eller | Natalia Gagarina
Proceedings of the 6th Workshop on Narrative Understanding

We investigate how NLP can help annotate the structure and complexity of oral narrative texts elicited via the Multilingual Assessment Instrument for Narratives (MAIN). MAIN is a theory-based tool designed to evaluate the narrative abilities of children who are learning one or more languages from birth or early in their development. It provides a standardized way to measure how well children can comprehend and produce stories across different languages and referential norms for children between 3 and 12 years old. MAIN has been adapted to over ninety languages and is used in over 65 countries. The MAIN analysis focuses on story structure and story complexity which are typically evaluated manually based on scoring sheets. We here investigate the automation of this process using BERT-based classification which already yields promising results.