Koichi Iwakawa


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
KIKIS at WMT 2025 General Translation Task
Koichi Iwakawa | Keito Kudo | Subaru Kimura | Takumi Ito | Jun Suzuki
Proceedings of the Tenth Conference on Machine Translation

We participated in the constrained English–Japanese track of the WMT 2025 General Machine Translation Task.Our system collected the outputs produced by multiple subsystems, each of which consisted of LLM-based translation and reranking models configured differently (e.g., prompting strategies and context sizes), and reranked those outputs.Each subsystem generated multiple segment-level candidates and iteratively selected the most probable one to construct the document translation.We then reranked the document-level outputs from all subsystems to obtain the final translation.For reranking, we adopted a text-based LLM reranking approach with a reasoning model to take long contexts into account.Additionally, we built a bilingual dictionary on the fly from parallel corpora to make the system more robust to rare words.