Kohei Hayashi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
Why does PairDiff work? - A Mathematical Analysis of Bilinear Relational Compositional Operators for Analogy Detection
Huda Hakami | Kohei Hayashi | Danushka Bollegala
Proceedings of the 27th International Conference on Computational Linguistics

Representing the semantic relations that exist between two given words (or entities) is an important first step in a wide-range of NLP applications such as analogical reasoning, knowledge base completion and relational information retrieval. A simple, yet surprisingly accurate method for representing a relation between two words is to compute the vector offset (PairDiff) between their corresponding word embeddings. Despite the empirical success, it remains unclear as to whether PairDiff is the best operator for obtaining a relational representation from word embeddings. We conduct a theoretical analysis of generalised bilinear operators that can be used to measure the l2 relational distance between two word-pairs. We show that, if the word embed- dings are standardised and uncorrelated, such an operator will be independent of bilinear terms, and can be simplified to a linear form, where PairDiff is a special case. For numerous word embedding types, we empirically verify the uncorrelation assumption, demonstrating the general applicability of our theoretical result. Moreover, we experimentally discover PairDiff from the bilinear relational compositional operator on several benchmark analogy datasets.