Kleomenis Katevas


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Context-Aware Membership Inference Attacks against Pre-trained Large Language Models
Hongyan Chang | Ali Shahin Shamsabadi | Kleomenis Katevas | Hamed Haddadi | Reza Shokri
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Membership Inference Attacks (MIAs) on pre-trained Large Language Models (LLMs) aim at determining if a data point was part of the model’s training set. Prior MIAs that are built for classification models fail at LLMs, due to ignoring the generative nature of LLMs across token sequences. In this paper, we present a novel attack on pre-trained LLMs that adapts MIA statistical tests to the perplexity dynamics of subsequences within a data point. Our method significantly outperforms prior approaches, revealing context-dependent memorization patterns in pre-trained LLMs.