Kittipitch Kuptavanich


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
Generating Summaries of Sets of Consumer Products: Learning from Experiments
Kittipitch Kuptavanich | Ehud Reiter | Kees Van Deemter | Advaith Siddharthan
Proceedings of the 11th International Conference on Natural Language Generation

We explored the task of creating a textual summary describing a large set of objects characterised by a small number of features using an e-commerce dataset. When a set of consumer products is large and varied, it can be difficult for a consumer to understand how the products in the set differ; consequently, it can be challenging to choose the most suitable product from the set. To assist consumers, we generated high-level summaries of product sets. Two generation algorithms are presented, discussed, and evaluated with human users. Our evaluation results suggest a positive contribution to consumers’ understanding of the domain.