Kihun Shin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Taxonomy of Comprehensive Safety for Clinical Agents
Jean Seo | Hyunkyung Lee | Gibaeg Kim | Wooseok Han | Jaehyo Yoo | Seungseop Lim | Kihun Shin | Eunho Yang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Safety is a paramount concern in clinical chatbot applications, where inaccurate or harmful responses can lead to serious consequences. Existing methods—such as guardrails and tool-calling—often fall short in addressing the nuanced demands of the clinical domain. In this paper, we introduce TACOS(Taxonomy of Comprehensive Safety for Clinical Agents), a fine-grained, 21-class taxonomy that integrates safety filtering and tool selection into a single user intent classification step. TACOS covers a wide spectrum of clinical and non-clinical queries, explicitly modeling varying safety thresholds and external tool dependencies. To validate our taxonomy, we curate a TACOS-annotated dataset and perform extensive experiments. Our results demonstrate the value of a new taxonomy specialized for clinical agent settings, and reveal valuable insights about train data distribution and pretrained knowledge of base models.