Kia Kirstein Hansen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
DanTok: Domain Beats Language for Danish Social Media POS Tagging
Kia Kirstein Hansen | Maria Barrett | Max Müller-Eberstein | Cathrine Damgaard | Trine Eriksen | Rob van der Goot
Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)

Language from social media remains challenging to process automatically, especially for non-English languages. In this work, we introduce the first NLP dataset for TikTok comments and the first Danish social media dataset with part-of-speech annotation. We further supply annotations for normalization, code-switching, and annotator uncertainty. As transferring models to such a highly specialized domain is non-trivial, we conduct an extensive study into which source data and modeling decisions most impact the performance. Surprisingly, transferring from in-domain data, even from a different language, outperforms in-language, out-of-domain training. These benefits nonetheless rely on the underlying language models having been at least partially pre-trained on data from the target language. Using our additional annotation layers, we further analyze how normalization, code-switching, and human uncertainty affect the tagging accuracy.