Khoder Jneid


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
Generation of Company descriptions using concept-to-text and text-to-text deep models: dataset collection and systems evaluation
Raheel Qader | Khoder Jneid | François Portet | Cyril Labbé
Proceedings of the 11th International Conference on Natural Language Generation

In this paper we study the performance of several state-of-the-art sequence-to-sequence models applied to generation of short company descriptions. The models are evaluated on a newly created and publicly available company dataset that has been collected from Wikipedia. The dataset consists of around 51K company descriptions that can be used for both concept-to-text and text-to-text generation tasks. Automatic metrics and human evaluation scores computed on the generated company descriptions show promising results despite the difficulty of the task as the dataset (like most available datasets) has not been originally designed for machine learning. In addition, we perform correlation analysis between automatic metrics and human evaluations and show that certain automatic metrics are more correlated to human judgments.