Khoa Le


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
JellyK at SemEval-2025 Task 11: Russian Multi-label Emotion Detection with Pre-trained BERT-based Language Models
Khoa Le | Dang Thin
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)

This paper presents our approach for SemEval-2025 Task 11, we focus on on multi-label emotion detection in Russian text (track A). We preprocess the data by handling special characters, punctuation, and emotive expressions to improve feature-label relationships. To select the best model performance, we fine-tune various pre-trained language models specialized in Russian and evaluate them using K-FOLD Cross-Validation. Our results indicated that ruRoberta-large achieved the best Macro F1-score among tested models. Finally, our system achieved fifth place in the unofficial competition ranking.