This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Khin MarSoe
Also published as:
Khin Mar Soe
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Transliteration is generally a phonetically based transcription across different writing systems. It is a crucial task for various downstream natural language processing applications. For the Myanmar (Burmese) language, robust automatic transliteration for borrowed English words is a challenging task because of the complex Myanmar writing system and the lack of data. In this study, we constructed a Myanmar-English named entity dictionary containing more than eighty thousand transliteration instances. The data have been released under a CC BY-NC-SA license. We evaluated the automatic transliteration performance using statistical and neural network-based approaches based on the prepared data. The neural network model outperformed the statistical model significantly in terms of the BLEU score on the character level. Different units used in the Myanmar script for processing were also compared and discussed.
This work explores neural machine translation between Myanmar (Burmese) and Rakhine (Arakanese). Rakhine is a language closely related to Myanmar, often considered a dialect. We implemented three prominent neural machine translation (NMT) systems: recurrent neural networks (RNN), transformer, and convolutional neural networks (CNN). The systems were evaluated on a Myanmar-Rakhine parallel text corpus developed by us. In addition, two types of word segmentation schemes for word embeddings were studied: Word-BPE and Syllable-BPE segmentation. Our experimental results clearly show that the highest quality NMT and statistical machine translation (SMT) performances are obtained with Syllable-BPE segmentation for both types of translations. If we focus on NMT, we find that the transformer with Word-BPE segmentation outperforms CNN and RNN for both Myanmar-Rakhine and Rakhine-Myanmar translation. However, CNN with Syllable-BPE segmentation obtains a higher score than the RNN and transformer.