This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
KhaiLe-Duc
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Multilingual automatic speech recognition (ASR) in the medical domain serves as a foundational task for various downstream applications such as speech translation, spoken language understanding, and voice-activated assistants. This technology improves patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we introduce MultiMed, the first multilingual medical ASR dataset, along with the first collection of small-to-large end-to-end medical ASR models, spanning five languages: Vietnamese, English, German, French, and Mandarin Chinese. To our best knowledge, MultiMed stands as the world’s largest medical ASR dataset across all major benchmarks: total duration, number of recording conditions, number of accents, and number of speaking roles. Furthermore, we present the first multilinguality study for medical ASR, which includes reproducible empirical baselines, a monolinguality-multilinguality analysis, Attention Encoder Decoder (AED) vs Hybrid comparative study and a linguistic analysis. We present practical ASR end-to-end training schemes optimized for a fixed number of trainable parameters that are common in industry settings. All code, data, and models are available online.
Transparency in AI healthcare decision-makingis crucial. By incorporating rationales to explain reason for each predicted label, userscould understand Large Language Models(LLMs)’s reasoning to make better decision.In this work, we introduce a new task - Sentiment Reasoning - for both speech and textmodalities, and our proposed multimodal multitask framework and the world’s largest multimodal sentiment analysis dataset. Sentiment Reasoning is an auxiliary task in sentiment analysis where the model predicts boththe sentiment label and generates the rationale behind it based on the input transcript.Our study conducted on both human transcriptsand Automatic Speech Recognition (ASR) transcripts shows that Sentiment Reasoning helpsimprove model transparency by providing rationale for model prediction with quality semantically comparable to humans while alsoimproving model’s classification performance(+2% increase in both accuracy and macro-F1) via rationale-augmented fine-tuning. Also,no significant difference in the semantic quality of generated rationales between human andASR transcripts. All code, data (five languages - Vietnamese, English, Chinese, German, andFrench) and models are published online.
Multilingual speech translation (ST) and machine translation (MT) in the medical domain enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we present the first systematic study on medical ST, to our best knowledge, by releasing MultiMedST, a large-scale ST dataset for the medical domain, spanning all translation directions in five languages: Vietnamese, English, German, French, and Simplified/Traditional Chinese, together with the models. With 290,000 samples, this is the largest medical MT dataset and the largest many-to-many multilingual ST among all domains. Secondly, we present the most comprehensive ST analysis in the field’s history, to our best knowledge, including: empirical baselines, bilingual-multilingual comparative study, end-to-end vs. cascaded comparative study, task-specific vs. multi-task sequence-to-sequence comparative study, code-switch analysis, and quantitative-qualitative error analysis. All code, data, and models are available online: https://github.com/leduckhai/MultiMed-ST.
Spoken Named Entity Recognition (NER) aims to extract named entities from speech and categorise them into types like person, location, organization, etc. In this work, we present *VietMed-NER* - the first spoken NER dataset in the medical domain. To our knowledge, our Vietnamese real-world dataset is the largest spoken NER dataset in the world regarding the number of entity types, featuring 18 distinct types. Furthermore, we present baseline results using various state-of-the-art pre-trained models: encoder-only and sequence-to-sequence; and conduct quantitative and qualitative error analysis. We found that pre-trained multilingual models generally outperform monolingual models on reference text and ASR output and encoders outperform sequence-to-sequence models in NER tasks. By translating the transcripts, the dataset can also be utilised for text NER in the medical domain in other languages than Vietnamese. All code, data and models are publicly available.
Due to privacy restrictions, there’s a shortage of publicly available speech recognition datasets in the medical domain. In this work, we present VietMed - a Vietnamese speech recognition dataset in the medical domain comprising 16h of labeled medical speech, 1000h of unlabeled medical speech and 1200h of unlabeled general-domain speech. To our best knowledge, VietMed is by far the world’s largest public medical speech recognition dataset in 7 aspects: total duration, number of speakers, diseases, recording conditions, speaker roles, unique medical terms and accents. VietMed is also by far the largest public Vietnamese speech dataset in terms of total duration. Additionally, we are the first to present a medical ASR dataset covering all ICD-10 disease groups and all accents within a country. Moreover, we release the first public large-scale pre-trained models for Vietnamese ASR, w2v2-Viet and XLSR-53-Viet, along with the first public large-scale fine-tuned models for medical ASR. Even without any medical data in unsupervised pre-training, our best pre-trained model XLSR-53-Viet generalizes very well to the medical domain by outperforming state-of-the-art XLSR-53, from 51.8% to 29.6% WER on test set (a relative reduction of more than 40%). All code, data and models are made publicly available here.