This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
KeyiWang
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Large language models (LLMs) fine-tuned on multimodal financial data have demonstrated impressive reasoning capabilities in various financial tasks. However, they often struggle with multi-step, goal-oriented scenarios in interactive financial markets, such as trading, where complex agentic approaches are required to improve decision-making. To address this, we propose FLAG-Trader, a unified architecture integrating linguistic processing (via LLMs) with gradient-driven reinforcement learning (RL) policy optimization, in which a partially fine-tuned LLM acts as the policy network, leveraging pre-trained knowledge while adapting to the financial domain through parameter-efficient fine-tuning. Through policy gradient optimization driven by trading rewards, our framework not only enhances LLM performance in trading but also improves results on other financial-domain tasks. We present extensive empirical evidence to validate these enhancements.
Despite the promise of large language models (LLMs) in finance, their capabilities for financial misinformation detection (FMD) remain largely unexplored. To evaluate the capabilities of LLMs in FMD task, we introduce the financial misinformation detection shared task featured at COLING FinNLP-FNP-LLMFinLegal-2024, FMD Challenge. This challenge aims to evaluate the ability of LLMs to verify financial misinformation while generating plausible explanations. In this paper, we provide an overview of this task and dataset, summarize participants’ methods, and present their experimental evaluations, highlighting the effectiveness of LLMs in addressing the FMD task. To the best of our knowledge, the FMD Challenge is one of the first challenges for assessing LLMs in the field of FMD. Therefore, we provide detailed observations and draw conclusions for the future development of this field.
Financial large language models (FinLLMs) have been applied to various tasks in business, finance, accounting, and auditing. Complex financial regulations and standards are critical to financial services, which LLMs must comply with. However, FinLLMs’ performance in understanding and interpreting financial regulations has rarely been studied. Therefore, we organize the Regulations Challenge, a shared task at COLING FinNLP-FNP-LLMFinLegal-2025. It encourages the academic community to explore the strengths and limitations of popular LLMs. We create 9 novel tasks and corresponding question sets. In this paper, we provide an overview of these tasks and summarize participants’ approaches and results. We aim to raise awareness of FinLLMs’ professional capability in financial regulations and industry standards.
Despite the promise of large language models based agent framework in stock trading task, their capabilities for comprehensive analysis and multiple different financial assets remain largely unexplored, such as cryptocurrency trading. To evaluate the capabilities of LLM-based agent framework in cryptocurrency trading, we introduce an LLMs-based financial shared task featured at COLING 2025 FinNLP-FNP-LLMFinLegal workshop, named Agent-based Single Cryptocurrency Trading Challenge. This challenge includes two cryptocurrencies: BitCoin and Ethereum. In this paper, we provide an overview of these tasks and datasets, summarize participants’ methods, and present their experimental evaluations, highlighting the effectiveness of LLMs in addressing cryptocurrency trading challenges. To the best of our knowledge, the Agent-based Single Cryptocurrency Trading Challenge is one of the first challenges for assessing LLMs in the financial area. In consequence, we provide detailed observations and take away conclusions for future development in this area.