Kevin Jose


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Constraining word alignments with posterior regularization for label transfer
Kevin Jose | Thomas Gueudre
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track

Unsupervised word alignments offer a lightweight and interpretable method to transfer labels from high- to low-resource languages, as long as semantically related words have the same label across languages. But such an assumption is often not true in industrial NLP pipelines, where multilingual annotation guidelines are complex and deviate from semantic consistency due to various factors (such as annotation difficulty, conflicting ontology, upcoming feature launches etc.);We address this difficulty by constraining the alignments models to remain consistent with both source and target annotation guidelines , leveraging posterior regularization and labeled examples. We illustrate the overall approach using IBM 2 (fast_align) as a base model, and report results on both internal and external annotated datasets. We measure consistent accuracy improvements on the MultiATIS++ dataset over AWESoME, a popular transformer-based alignment model, in the label projection task (+2.7% at word-level and +15% at sentence-level), and show how even a small amount of target language annotations help substantially.