This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
KeshetRonen
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
The deployment of Large Language Models (LLMs) in real-world applications presents both opportunities and challenges, particularly in multilingual and code-mixed communication settings. This research evaluates the performance of seven leading LLMs in sentiment analysis on a dataset derived from multilingual and code-mixed WhatsApp chats, including Swahili, English and Sheng. Our evaluation includes both quantitative analysis using metrics like F1 score and qualitative assessment of LLMs’ explanations for their predictions. We find that, while Mistral-7b and Mixtral-8x7b achieved high F1 scores, they and other LLMs such as GPT-3.5-Turbo, Llama-2-70b, and Gemma-7b struggled with understanding linguistic and contextual nuances, as well as lack of transparency in their decision-making process as observed from their explanations. In contrast, GPT-4 and GPT-4-Turbo excelled in grasping diverse linguistic inputs and managing various contextual information, demonstrating high consistency with human alignment and transparency in their decision-making process. The LLMs however, encountered difficulties in incorporating cultural nuance especially in non-English settings with GPT-4s doing so inconsistently. The findings emphasize the necessity of continuous improvement of LLMs to effectively tackle the challenges of culturally nuanced, low-resource real-world settings and the need for developing evaluation benchmarks for capturing these issues.
Access to mobile phones in many low- and middle-income countries has increased exponentially over the last 20 years, providing an opportunity to connect patients with healthcare interventions through mobile phones (known as mobile health). A barrier to large-scale implementation of interactive mobile health interventions is the human effort needed to manage participant messages. In this study, we explore the use of natural language processing to improve healthcare workers’ management of messages from pregnant and postpartum women in Kenya. Using multilingual, low-resource language text messages from the Mobile solutions for Women and Children’s health (Mobile WACh NEO) study, we developed models to assess urgency of incoming messages. We evaluated models using a novel approach that focuses on clinical usefulness in either triaging or prioritizing messages. Our best-performing models did not reach the threshold for clinical usefulness we set, but have the potential to improve nurse workflow and responsiveness to urgent messages.
In this work, we conduct a quantitative linguistic analysis of the language usage patterns of multilingual peer supporters in two health-focused WhatsApp groups in Kenya comprising of youth living with HIV. Even though the language of communication for the group was predominantly English, we observe frequent use of Kiswahili, Sheng and code-mixing among the three languages. We present an analysis of language choice and its accommodation, different functions of code-mixing, and relationship between sentiment and code-mixing. To explore the effectiveness of off-the-shelf Language Technologies (LT) in such situations, we attempt to build a sentiment analyzer for this dataset. Our experiments demonstrate the challenges of developing LT and therefore effective interventions for such forums and languages. We provide recommendations for language resources that should be built to address these challenges.