This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
KeremZaman
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large language models (LLMs) excel at answering questions but remain passive learners—absorbing static data without the ability to question and refine knowledge. This paper explores how LLMs can transition to interactive, question-driven learning through student-teacher dialogues. We introduce INTERACT (INTERactive learning for Adaptive Concept Transfer), a framework in which a “student” LLM engages a “teacher” LLM through iterative inquiries to acquire knowledge across 1,347 contexts, including song lyrics, news articles, movie plots, academic papers, and images. Our experiments show that across a wide range of scenarios and LLM architectures, interactive learning consistently enhances performance, achieving up to a 25% improvement, with ‘cold-start’ student models matching static learning baselines in as few as five dialogue turns. Interactive setups can also mitigate the disadvantages of weaker teachers, showcasing the robustness of question-driven learning.
Large Language Models (LLMs) offer natural language explanations as an alternative to feature attribution methods for model interpretability. However, despite their plausibility, they may not reflect the model’s truereasoning faithfully. While several faithfulness metrics have been proposed, they are often evaluated in isolation, making principled comparisons between them difficult. We present Causal Diagnosticity, a testbed framework for evaluating faithfulness metrics for natural language explanations. We use the concept of diagnosticity, and employ model-editing methods to generate faithful-unfaithful explanation pairs. Our benchmark includes four tasks: fact-checking, analogy, object counting, and multi-hop reasoning. We evaluate prominent faithfulness metrics, including post-hoc explanation and chain-of-thought methods. Diagnostic performance varies across tasks and models, with Filler Tokens performing best overall. Additionally, continuous metrics are generally more diagnostic than binary ones but can be sensitive to noise and model choice. Our results highlight the need for more robust faithfulness metrics.
Model fusion research aims to aggregate the knowledge of multiple individual models to enhance performance by combining their weights. In this work, we study the inverse problem: investigating whether model fusion can be used to reduce unwanted knowledge. We investigate the effects of model fusion in three scenarios: the learning of shortcuts, social biases, and memorization of training data in fine-tuned language models. Through experiments covering classification and generation tasks, our analysis highlights that shared knowledge among models is enhanced during model fusion, while unshared knowledge is usually forgotten. Based on this observation, we demonstrate the potential of model fusion as a debiasing tool and showcase its efficacy in addressing privacy concerns associated with language models.
Understanding the internal reasoning behind the predictions of machine learning systems is increasingly vital, given their rising adoption and acceptance. While previous approaches, such as LIME generate algorithmic explanations by attributing importance to input features for individual examples, recent research indicates that practitioners prefer examining language explanations that explain sub-groups of examples (Lakkaraju et al., 2022). In this paper, we introduce MaNtLE, a model-agnostic natural language explainer that analyzes a set of classifier predictions and generates faithful natural language explanations of classifier rationale for structured classification tasks. MaNtLE uses multi-task training on thousands of synthetic classification tasks to generate faithful explanations. Our experiments indicate that, on average, MaNtLE-generated explanations are at least 11% more faithful compared to LIME and Anchors explanations across three tasks. Human evaluations demonstrate that users can better predict model behavior using explanations from MaNtLE compared to other techniques.
Most evaluations of attribution methods focus on the English language. In this work, we present a multilingual approach for evaluating attribution methods for the Natural Language Inference (NLI) task in terms of faithfulness and plausibility.First, we introduce a novel cross-lingual strategy to measure faithfulness based on word alignments, which eliminates the drawbacks of erasure-based evaluations.We then perform a comprehensive evaluation of attribution methods, considering different output mechanisms and aggregation methods.Finally, we augment the XNLI dataset with highlight-based explanations, providing a multilingual NLI dataset with highlights, to support future exNLP studies. Our results show that attribution methods performing best for plausibility and faithfulness are different.