Kentaro Kanada


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
Classifying Lexical-semantic Relationships by Exploiting Sense/Concept Representations
Kentaro Kanada | Tetsunori Kobayashi | Yoshihiko Hayashi
Proceedings of the 1st Workshop on Sense, Concept and Entity Representations and their Applications

This paper proposes a method for classifying the type of lexical-semantic relation between a given pair of words. Given an inventory of target relationships, this task can be seen as a multi-class classification problem. We train a supervised classifier by assuming: (1) a specific type of lexical-semantic relation between a pair of words would be indicated by a carefully designed set of relation-specific similarities associated with the words; and (2) the similarities could be effectively computed by “sense representations” (sense/concept embeddings). The experimental results show that the proposed method clearly outperforms an existing state-of-the-art method that does not utilize sense/concept embeddings, thereby demonstrating the effectiveness of the sense representations.