Kenan Fayoumi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
SU-NLP at WNUT-2020 Task 2: The Ensemble Models
Kenan Fayoumi | Reyyan Yeniterzi
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

In this paper, we address the problem of identifying informative tweets related to COVID-19 in the form of a binary classification task as part of our submission for W-NUT 2020 Task 2. Specifically, we focus on ensembling methods to boost the classification performance of classification models such as BERT and CNN. We show that ensembling can reduce the variance in performance, specifically for BERT base models.