Kelly Shen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
Deconfounded Lexicon Induction for Interpretable Social Science
Reid Pryzant | Kelly Shen | Dan Jurafsky | Stefan Wagner
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

NLP algorithms are increasingly used in computational social science to take linguistic observations and predict outcomes like human preferences or actions. Making these social models transparent and interpretable often requires identifying features in the input that predict outcomes while also controlling for potential confounds. We formalize this need as a new task: inducing a lexicon that is predictive of a set of target variables yet uncorrelated to a set of confounding variables. We introduce two deep learning algorithms for the task. The first uses a bifurcated architecture to separate the explanatory power of the text and confounds. The second uses an adversarial discriminator to force confound-invariant text encodings. Both elicit lexicons from learned weights and attentional scores. We use them to induce lexicons that are predictive of timely responses to consumer complaints (controlling for product), enrollment from course descriptions (controlling for subject), and sales from product descriptions (controlling for seller). In each domain our algorithms pick words that are associated with narrative persuasion; more predictive and less confound-related than those of standard feature weighting and lexicon induction techniques like regression and log odds.