Keisuke Kamahori


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation
Keisuke Kamahori | Jungo Kasai | Noriyuki Kojima | Baris Kasikci
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Modern automatic speech recognition (ASR) models, such as OpenAI’s Whisper, rely on deep encoder-decoder architectures, and their encoders are a critical bottleneck for efficient deployment due to high computational intensity. We introduce LiteASR, a low-rank compression scheme for ASR encoders that significantly reduces inference costs while maintaining transcription accuracy. Our approach leverages the strong low-rank properties observed in intermediate activations: by applying principal component analysis (PCA) with a small calibration dataset, we approximate linear transformations with a chain of low-rank matrix multiplications, and further optimize self-attention to work in reduced dimensionality. Evaluation results show that our method can compress Whisper large-v3’s encoder size by over 50%, matching Whisper medium’s size with better transcription accuracy, thereby establishing a new Pareto frontier of accuracy and efficiency. The code of LiteASR is available at https://github.com/efeslab/LiteASR.