Ke Deng

Papers on this page may belong to the following people: Ke Deng, Ke Deng


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
TopWORDS-Poetry: Simultaneous Text Segmentation and Word Discovery for Classical Chinese Poetry via Bayesian Inference
Changzai Pan | Feiyue Li | Ke Deng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

As a precious cultural heritage of human beings, classical Chinese poetry has a very unique writing style and often contains special words that rarely appear in general Chinese texts, posting critical challenges for natural language processing. Little effort has been made in the literature for processing texts from classical Chinese poetry. This study fills in this gap with TopWORDS-Poetry, an unsupervised method that can achieve reliable text segmentation and word discovery for classical Chinese poetry simultaneously without pre-given vocabulary or training corpus. Experimental studies confirm that TopWORDS-Poetry can successfully recognize unique poetry words, such as named entities and literary allusions, from metrical poems of Complete Tang Poetry and segment these poetry lines into sequences of meaningful words with high quality.