Ke Deng

Other people with similar names: Ke Deng

Unverified author pages with similar names: Ke Deng


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
TopWORDS-Seg: Simultaneous Text Segmentation and Word Discovery for Open-Domain Chinese Texts via Bayesian Inference
Changzai Pan | Maosong Sun | Ke Deng
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Processing open-domain Chinese texts has been a critical bottleneck in computational linguistics for decades, partially because text segmentation and word discovery often entangle with each other in this challenging scenario. No existing methods yet can achieve effective text segmentation and word discovery simultaneously in open domain. This study fills in this gap by proposing a novel method called TopWORDS-Seg based on Bayesian inference, which enjoys robust performance and transparent interpretation when no training corpus and domain vocabulary are available. Advantages of TopWORDS-Seg are demonstrated by a series of experimental studies.