This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
KazunoriKomatani
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
This paper proposes a methodology for identifying evaluation items for practical dialogue systems. Traditionally, user satisfaction and user experiences have been the primary metrics for evaluating dialogue systems. However, there are various other evaluation items to consider when developing and operating practical dialogue systems, and such evaluation items are expected to lead to new research topics. So far, there has been no methodology for identifying these evaluation items. We propose identifying evaluation items based on business-dialogue system alignment models, which are applications of business-IT alignment models used in the development and operation of practical IT systems. We also present a generic model that facilitates the construction of a business-dialogue system alignment model for each dialogue system.
In human-robot dialogue systems, streaming automatic speech recognition (ASR) services (e.g., Google ASR) are often utilized, with the microphone positioned close to the robot’s loudspeaker. Under these conditions, both the robot’s and the user’s utterances are captured, resulting in frequent failures to detect user speech. This study analyzes voice activity detection (VAD) errors by comparing results from such streaming ASR to those from standalone VAD models. Experiments conducted on three distinct dialogue datasets showed that streaming ASR tends to ignore user utterances immediately following system utterances. We discuss the underlying causes of these VAD errors and provide recommendations for improving VAD performance in human-robot dialogue.
We aim to develop a library for classifying affirmative and negative user responses, intended for integration into a dialogue system development toolkit. Such a library is expected to highly perform even with minimal annotated target domain data, addressing the practical challenge of preparing large datasets for each target domain. This short paper compares several approaches under conditions where little or no annotated data is available in the target domain. One approach involves fine-tuning a pre-trained BERT model, while the other utilizes a GPT API for zero-shot or few-shot learning. Since these approaches differ in execution speed, development effort, and execution costs, in addition to performance, the results serve as a basis for discussing an appropriate configuration suited to specific requirements. Additionally, we have released the training data and the fine-tuned BERT model for Japanese affirmative/negative classification.
One essential function of dialogue systems is the ability to ask questions and acquire necessary information from the user through dialogue. To avoid degrading user engagement through repetitive questioning, the number of such questions should be kept low. In this study, we cast knowledge acquisition through dialogue as stream-based active learning, exemplified by the segmentation of user utterances containing novel words. In stream-based active learning, data instances are presented sequentially, and the system selects an action for each instance based on an acquisition function that determines whether to request the correct answer from the oracle (in this case, the user). To improve the efficiency of training the acquisition function via reinforcement learning, we introduce two extensions: (1) a new action that performs semi-supervised learning, and (2) a state representation that takes the remaining budget into account. Our simulation-based experiments showed that these two extensions improved word segmentation performance with fewer questions for the user, compared to a baseline without these extensions.
This paper addresses the issue of the significant labor required to test interview dialogue systems. While interview dialogue systems are expected to be useful in various scenarios, like other dialogue systems, testing them with human users requires significant effort and cost. Therefore, testing with user simulators can be beneficial. Since most conventional user simulators have been primarily designed for training task-oriented dialogue systems, little attention has been paid to the personas of the simulated users. During development, testing interview dialogue systems requires simulating a wide range of user behaviors, but manually creating a large number of personas is labor-intensive. We propose a method that automatically generates personas for user simulators using a large language model. Furthermore, by assigning personality traits related to communication styles when generating personas, we aim to increase the diversity of communication styles in the user simulator. Experimental results show that the proposed method enables the user simulator to generate utterances with greater variation.
Multimodal information such as text and audiovisual data has been used for emotion/sentiment estimation during human-agent dialogue; however, user sentiments are not necessarily expressed explicitly during dialogues. Biosignals such as brain signals recorded using an electroencephalogram (EEG) sensor have been the subject of focus in affective computing regions to capture unexpressed emotional changes in a controlled experimental environment. In this study, we collect and analyze multimodal data with an EEG during a human-agent dialogue toward capturing unexpressed sentiment. Our contributions are as follows: (1) a new multimodal human-agent dialogue dataset is created, which includes not only text and audiovisual data but also frontal EEGs and physiological signals during the dialogue. In total, about 500-minute chat dialogues were collected from thirty participants aged 20 to 70. (2) We present a novel method for dealing with eye-blink noise for frontal EEGs denoising. This method applies facial landmark tracking to detect and delete eye-blink noise. (3) An experimental evaluation showed the effectiveness of the frontal EEGs. It improved sentiment estimation performance when used with other modalities by multimodal fusion, although it only has three channels.
We demonstrate DialBB, a dialogue system development framework, which we have been building as an educational material for dialogue system technology. Building a dialogue system requires the adoption of an appropriate architecture depending on the application and the integration of various technologies. However, this is not easy for those who have just started learning dialogue system technology. Therefore, there is a demand for educational materials that integrate various technologies to build dialogue systems, because traditional dialogue system development frameworks were not designed for educational purposes. DialBB enables the development of dialogue systems by combining modules called building blocks. After understanding sample applications, learners can easily build simple systems using built-in blocks and can build advanced systems using their own developed blocks.
Estimating the subjective impressions of human users during a dialogue is necessary when constructing a dialogue system that can respond adaptively to their emotional states. However, such subjective impressions (e.g., how much the user enjoys the dialogue) are inherently ambiguous, and the annotation results provided by multiple annotators do not always agree because they depend on the subjectivity of the annotators. In this paper, we analyzed the annotation results using 13,226 exchanges from 155 participants in a multimodal dialogue corpus called Hazumi that we had constructed, where each exchange was annotated by five third-party annotators. We investigated the agreement between the subjective annotations given by the third-party annotators and the participants themselves, on both per-exchange annotations (i.e., participant’s sentiments) and per-dialogue (-participant) annotations (i.e., questionnaires on rapport and personality traits). We also investigated the conditions under which the annotation results are reliable. Our findings demonstrate that the dispersion of third-party sentiment annotations correlates with agreeableness of the participants, one of the Big Five personality traits.
Coreference resolution such as for anaphora has been an essential challenge that is commonly found in conversational machine reading comprehension (CMRC). This task aims to determine the referential entity to which a pronoun refers on the basis of contextual information. Existing approaches based on pre-trained language models (PLMs) mainly rely on an end-to-end method, which still has limitations in clarifying referential dependency. In this study, a novel graph-based approach is proposed to integrate the coreference of given text into graph structures (called coreference graphs), which can pinpoint a pronoun’s referential entity. We propose two graph-combined methods, evidence-enhanced and the fusion model, for CMRC to integrate coreference graphs from different levels of the PLM architecture. Evidence-enhanced refers to textual level methods that include an evidence generator (for generating new text to elaborate a pronoun) and enhanced question (for rewriting a pronoun in a question) as PLM input. The fusion model is a structural level method that combines the PLM with a graph neural network. We evaluated these approaches on a CoQA pronoun-containing dataset and the whole CoQA dataset. The result showed that our methods can outperform baseline PLM methods with BERT and RoBERTa.
When individuals communicate with each other, they use different vocabulary, speaking speed, facial expressions, and body language depending on the people they talk to. This paper focuses on the speaker’s age as a factor that affects the change in communication. We collected a multimodal dialogue corpus with a wide range of speaker ages. As a dialogue task, we focus on travel, which interests people of all ages, and we set up a task based on a tourism consultation between an operator and a customer at a travel agency. This paper provides details of the dialogue task, the collection procedure and annotations, and the analysis on the characteristics of the dialogues and facial expressions focusing on the age of the speakers. Results of the analysis suggest that the adult speakers have more independent opinions, the older speakers more frequently express their opinions frequently compared with other age groups, and the operators expressed a smile more frequently to the minor speakers.
For the acquisition of knowledge through dialogues, it is crucial for systems to ask questions that do not diminish the user’s willingness to talk, i.e., that do not degrade the user’s impression. This paper reports the results of our analysis on how user impression changes depending on the types of questions to acquire lexical knowledge, that is, explicit and implicit questions, and the correctness of the content of the questions. We also analyzed how sequences of the same type of questions affect user impression. User impression scores were collected from 104 participants recruited via crowdsourcing and then regression analysis was conducted. The results demonstrate that implicit questions give a good impression when their content is correct, but a bad impression otherwise. We also found that consecutive explicit questions are more annoying than implicit ones when the content of the questions is correct. Our findings reveal helpful insights for creating a strategy to avoid user impression deterioration during knowledge acquisition.
Unsupervised segmentation of phoneme sequences is an essential process to obtain unknown words during spoken dialogues. In this segmentation, an input phoneme sequence without delimiters is converted into segmented sub-sequences corresponding to words. The Pitman-Yor semi-Markov model (PYSMM) is promising for this problem, but its performance degrades when it is applied to phoneme-level word segmentation. This is because of insufficient cues for the segmentation, e.g., homophones are improperly treated as single entries and their different contexts are also confused. We propose a phoneme-length context model for PYSMM to give a helpful cue at the phoneme-level and to predict succeeding segments more accurately. Our experiments showed that the peak performance with our context model outperformed those without such a context model by 0.045 at most in terms of F-measures of estimated segmentation.
We address the problem of acquiring the ontological categories of unknown terms through implicit confirmation in dialogues. We develop an approach that makes implicit confirmation requests with an unknown term’s predicted category. Our approach does not degrade user experience with repetitive explicit confirmations, but the system has difficulty determining if information in the confirmation request can be correctly acquired. To overcome this challenge, we propose a method for determining whether or not the predicted category is correct, which is included in an implicit confirmation request. Our method exploits multiple user responses to implicit confirmation requests containing the same ontological category. Experimental results revealed that the proposed method exhibited a higher precision rate for determining the correctly predicted categories than when only single user responses were considered.
This paper describes a Bayesian language model for predicting spontaneous utterances. People sometimes say unexpected words, such as fillers or hesitations, that cause the miss-prediction of words in normal N-gram models. Our proposed model considers mixtures of possible segmental contexts, that is, a kind of context-word selection. It can reduce negative effects caused by unexpected words because it represents conditional occurrence probabilities of a word as weighted mixtures of possible segmental contexts. The tuning of mixture weights is the key issue in this approach as the segment patterns becomes numerous, thus we resolve it by using Bayesian model. The generative process is achieved by combining the stick-breaking process and the process used in the variable order Pitman-Yor language model. Experimental evaluations revealed that our model outperformed contiguous N-gram models in terms of perplexity for noisy text including hesitations.